Completing an Insecticide Resistance Management Plan for Alfalfa Weevils Damaging Forage Alfalfa in the Western US

Kevin Wanner

Ian Grettenberger UCDAVIS UNIVERSITY OF CALIFORNIA

<u>USDA</u>

The Problem – Pyrethroid Resistance

- Pyrethroid insecticides are the primary tool used to manage alfalfa weevils
- Reports of control failure after three spray applications
- Only one alternative effective Mode of Action (MoA) insecticide available

Untreated Pyrethroid MoA 3A

Steward

MoA 22A

Limited Alternatives to Pyrethroid MoA3A

Indoxacarb (Steward) MoA 22A currently the only effective alternative

		Insecticides Available for Alfalfa Weevil					
	MoA	AI	Trade Name	Registrant	PHI	-	
	1A	carbaryl	Sevin 4F, Sevin XLR Plus	Tessenderlo Kerley	7d	-	
	1A	methomyl	Lannate LV, Lannate SP	DuPont	7d	_	
(1B	chlorpyrifos	Cobalt, Cobalt Advanced,	Dow AgroSciences,	7-21d		
			Lorsban Advanced, Lorsban 4E, Lorsban 75 WG	Drexel, Gowan		J	Removed from market
	1B	malathion	Malathion 5EC, Malathion	Drexel, Loveland	0		
			ULV Concentrate	Products			
	1B	dimethoate	Dimethoate 2.67,	Drexel, Loveland,	10 d		
			Dimethoate 4EC,	others			
			Dimethoate 400				
	1B	phosmet	Imidan 70-W	Gowan	variable		
	1B/3	chlorpyrifos + zeta-	Stallion	FMC	7d		
	A	cypermethrin					Purethroids Mod 30
	3A	alpha-cypermethrin	Fastac EC	BASF	3d		ryrethiolds, MoA SA
	3A	zeta-cypermethrin	Mustang Maxx, Respect EC	FMC, BASF	3d		Several active ingredients
	3A	beta-cyfluthrin	Baythroid XL, Tombstone	Bayer, Loveland	0-21d		(AI) and trade name
MoA	3A	gamma-cyhalothrin	Proaxis, Declare	FMC	7d		(i ii) and trade name
3A	3A	lambda-cyhalothrin	Warrior II, Silencer, Silencer VXN	Syngenta, ADAMA	7d		products
	3A	permethrin	Ambush 25W, Pounce 25 WP, Arctic 3.2 EC	FMC, AmVac, WinField	0-14d		Lose the entire group due
	3A	bifenthrin *	Brigade 2EC, Discipline 2EC	FMC, AMVAC	*		to cross-resistance within
	3A/2 8	lambda-cyhalothrin + chlorantraniliprole	Besiege	Syngenta	7d		THE SATTLE IVIUA CLASS
	22A	indoxacarb	Steward EC	FMC	7d		Steward remains effective
	5	spinosad	Entrust SC	Dow AgroSciences	3d		

The Pest: Alfalfa Weevil

Adults migrate to overwintering sites

Adults active when temperatures above 48°F. Migrate into alfalfa fields to mate and lay eggs

Larvae hatch and feed; first in terminals (left), later on open leaves

JUN

Cocoons with pupae form late June and July

New adults enter summer dormancy then become active in the fall to feed prior to migrating to overwintering sites

MAY

JUL

AUG

APR

Journal of Economic Entomology, 114(5), 2021, 2088–2095 https://doi.org/10.1093/jee/toab152 Advance Access Publication Date: 3 August 2021 Research

OXFORD

Field and Forage Crops

First Report of Alfalfa Weevil (Coleoptera: Curculionidae) Resistance to Lambda-Cyhalothrin in Montana

Erika A. Rodbell^{1,0} and Kevin W. Wanner

Department of Plant Science and Plant Pathology, Montana State University, 119 Plant BioSciences, Bozeman, MT 59717-3150, USA and ¹Corresponding author, e-mail: erika.rodbell@montana.edu

Subject Editor: Silvia Rondon

Received 18 April 2021; Editorial decision 6 July 2021

Abstract

Forage alfalfa (Medicago sativa L. [Fabales: Fabacae]) is a major agronomic crop grown nationally and Montana ranks highly in acres harvested. The alfalfa weevil (Hypera postica Gyllenhal [Coleoptera: Curculionidae]) is the primary defoliating pest that requires insecticide applications to prevent yield loss, particularly pyrethroid active ingredients (a.i.) that are both efficacious and cost-effective. Reports from commercial alfalfa producers in Big Horn County, MT, suggested local populations of alfalfa weevil had developed resistance to the pyrethroid a.i. lambda-cyhalothrin (type II pyrethroid). Chemical control is an important component of integrated pest management (IPM) of alfalfa weevil and the loss of pyrethroid a.i. as an effective tool would result in additional production costs. Two locations in southern Big Horn County and nine locations in four other Montana counties where resistance has not been reported were sampled and assayed for resistance to lambda-cyhalothrin. Populations from three counties were susceptible, the concentration causing 50% mortality (LC_{En}) ranged from 0.02 to 0.10 µg/cm². In contrast, populations from Big Horn County did not reach 50% mortality at the highest concentration of lambda-cyhalothrin tested (3.30 µg/cm²), indicating high levels of resistance have developed in these populations. A field trial in Big Horn County supported laboratory results of resistance; lambda-cyhalothrin at the highest label rate did not reduce alfalfa weevil populations. Additional bioassays suggest cross-resistance to zeta-cypermethrin (type II pyrethroid), but only partial cross-resistance to permethrin (type I pyrethroid).

Objective: Determine the Extent and Severity of Pyrethroid Resistance in the Western US

A Stations	5 5 30		State	County	Site #	μg/cm ²	
and a second			Arizona	Yuma	1	<mark>0.18</mark>	
A.C. States	Aller .		19		2	<mark>0.12</mark>	
					3	1.35	
o LC-, valu	ues for $>$	80 sites		La Paz	1	1.55	
- 50 -·					2	<mark>0.65</mark>	
	and the second second second	A			3	6.5	
o Group i	nto three	e categories:			4	2.78	
e ereap				D'1	5	0.91	
Susceptible	e. model	rate resistance		Pinal	1	0.13	10113
	Formeren de l'al	A A A A A A A A A A A A A A A A A A A	California	Riverside	1	0.29	FROM
& high res	sistance				2	0.22	111
					3	0.33	No. of
and the second	4 Sec. 5. 5				4	0.27	ALC: NO
\circ 100 told	I range Ir	n LC ₅₀ values	Kansas	Lvon	1	6.65	1 AVAN
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1			Montana	Beaverhead	1	0.43	12
			Wientana	Gallatin	1	0.05	1
Resistance	LC50	Times (X) Higher Label Rate			2	0.16	
Category	(µg/cm²)	(0.34 μg/cm²)	States	Ravali	1	<mark>0.37</mark>	A A
Cussentible	-0.2	< 0.0X			2	<mark>0.19</mark>	
Susceptible	<0.3	< 0.9X		Big Horn	1	>3.3	101
Moderate	0.30 -0.99	0.9X - 2.9X			2	>1.0	
High					_		1.1
A CARA	> 1.00	> 2.9X			3	>3.3	
Section for the	> 1.00	> 2.9X	Washington	Klickitat	3	>3.3 0.13	
	> 1.00	> 2.9X	Washington Wyoming	Klickitat Park	3 1 1	>3.3 0.13 0.42	1410 115

State

Field

County

I Ca

Resistance to Lambda Cyhalothrin (Warrior & Generics)

Resistance Category	LC ₅₀ (µg/cm²)	Resistance Ratio (LC ₅₀ /0.01)
Susceptible	<0.30	<30x
Moderate	0.30 - 1.0	30x – 100x
High	> 1.0	>100x

Conclusion

- Every western state
 investigated has a highly
 resistant population of
 alfalfa weevil
- Every state has susceptible populations; an opportunity to mitigate resistance and extend the use of pyrethroid active ingredients

Objective: Are Alfalfa Weevils Resistant to all Pyrethroid A.I. (Cross-Resistance) ?

- 3A alpha-cypermethrin3A zeta-cypermethrin
- 3A beta-cyfluthrin
- 3A gamma-cyhalothrin
- 3A lambda-cyhalothrin
- 3A permethrin
- 3A bifenthrin *

Compare the effectiveness of the different active ingredients against alfalfa weevils **resistant** to lambda cyhalothrin (Warrior)

Laboratory bioassay: Compare resistant and susceptible populations in three regions, 6 A.I

Field trials: Test the commercial products against **resistant** alfalfa weevils in three regions

Laboratory Assay: Madison (S) vs Big Horn County (R)

- Discriminating Doses (blank vials vs high dose)
- Control Mortality Low (blank vials)

Laboratory Assay: Madison (S) vs Big Horn County (R)

$\circ~$ High Discriminating Dose

Field Trial Results, Resistant Populations Yakima WA & Parker AZ

• Field and lab results similar

• Pyrethroid AI generally ineffective on resistant populations with the exception of bifenthrin (Brigade)

Summary

May

February

Sacramento San Francisco San Jose

ALIFORNIA

Seattle

Portland

Resistance is widespread; Cross-resistance
 Bifenthrin for seed alfalfa
 Pattern consistent across the West
 Manage for Resistance (IPM, Rotate MoA)
 Have to preserve Steward
 Regional Extension – Consistent Message
 Collaboration with all stakeholders
 Continuing and future research

MONTANA June

NSAS

OKLAHON

Resistant Alfalfa Weevil Project

Welcome to RAW Sign Up Our Co

p Our Collaborators

www.montana.edu/resistantalfalfaweevil/

RESISTANT ALFALFA WEEVIL

RA

Funded by USDA NIFA Alfalfa Seed and Alfalfa Forage Systems Program

The Resistant Alfalfa Weevil Project (RAW) is a multistate collaboration working to: Quantify the level of resistance to pyrethroid insecticides in locations where it has established

USDA

- Map the geographic spread of resistant alfalfa weevil populations
- Identify risk factors for the development of pyrethroid-resistant alfalfa weevils
- Develop resistance management recommendations for Western Region alfalfa producers and stakeholders to mitigate the economic impacts of insecticide resistance.

Acknowledgements

USDA NIFA Alfalfa Seed and Alfalfa Forage Systems Program National Alfalfa Forage Alliance

Contributing producers, PCAs & Extension Personnel Michael Rethwich (CA), Silvia Rondon (OR), Ayman Mostafa (AZ) Jeremiah Vardiman & Scott Schell (WY), Rachel Long (CA)

Chris Caron, Cassidy Leno, Paragya Kiju, Catrina Boggess, Isabella Pritchard, Hailie Richardson, Julia Lammens & Holly Redmond, Hayes Goosey, Emily Meccage

Nick Clark, Rob Wilson (Intermountain REC, Siskiyou) Giuliano Galdi (Siskiyou), Tom Getts (Lassen, Modoc, Plumas-Sierra) Michelle Leinfelder-Miles (Delta)

Kevin Goding (UCD), Treanna Pierce (UCD) Omir Livneh (UCD), Ben Lee (UCD)

Madi Hendrick

Erika Rodbell